HYDROTECHNICAL CONCRETE STRUCTURES

Course ID: IGW-SE>HYBUDB
Course title: HYDROTECHNICAL CONCRETE STRUCTURES
Semester: 5 / Winter
ECTS: 5
Lectures/Classes: 30 / 30 hours
Field of study: Water Engineering and Management
Study cycle: 1st cycle
Type of course: compulsory
Prerequisites: mathematics, physics, hydrology / fluid mechanics
Contact person: dr hab. inż. Robert Kasperek, prof. uczelni; robert.kasperek@upwr.edu.pl
Short description: The object discusses and classifies most important hydraulic structures HS (weirs, dams, barrages, reservoirs and tanks, drainage-buildings, power stations, fish passes, seizures etc.). The student learns their designings and recognizes modern materials and methods applied in the HS.
Full description: Purpose and types of hydraulic structures (HS). The classification of HS. HS and the environment. Technical conditions which should correspond to the properties of water industry. Supplied and outled structures. Fixed weirs. Mobile weirs with locks. Small HS and engineering structures on rivers and drainage ditches. Filtration within HS. Energy dissipation devices. Blurs of the bed and banks within HS, insurances of the upper and lower positions. Steel constructions of HS. Design principles of weir locks. Recognitions of surface waters and their protection against ice and sediment. Hydropower plants. Fish passes. Concrete dams and barrages, reservoirs and flood protection. Ice phenomena in rivers and reservoirs. Modern technologies and materials used in HS.
Bibliography: 1.Novak P. et al. 2008. Hydraulic structures. Taylor and Francis, London and New York. 2.Kennard M.F., Owens C.L. and Reader R.A. 1996. Engineering Guide to the Safety of Concrete and Masonry Dam Structures in the UK, Report 148,CIRIA, London. 3. Khatsuria R.M. 2005. Review of Hydraulics of Spillways and Energy Dissipators, Marcel Dekker, New York. 4. Jansen R.B. (ed.) 1988. Advanced Dam Engineering, Van Nostrand Reinhold, New York. 5. Morris G.L. and Fan J. 1998. Reservoir Sedimentation Handbook, McGraw-Hill, New York. 6. Erbisti P.C.F. 2001. Design of Hydraulic Gates, A.A. Balkema, Rotterdam. 1.ESHA. 7.Depczyński W., Szamowski A. 1999. Budowle i zbiorniki wodne. Oficyna Politechniki Warszawskiej. 8. Fish passes. Design, dimensions and monitoring. 1996/2002. DVWK and FAO. 9. Parzonka W., Kasperek R., Głowski R. 2003. Przepustowość budowli wodnych i mostów w dolinie Widawy i w obrębie Wrocławskiego Węzła Wodnego. W: Problemy hydrotechniki – współczesne podstawy planowania i projektowania w inżynierii i gospodarce wodnej. Praca zbiorowa pod redakcją Ryszarda Rogali i Stanisława Kosteckiego, Dolnośląskie Wydawnictwo Edukacyjne. 10. Bobrowski P., Trybuś P., Kasperek R. 2015. Redukcja fali wezbraniowej na rzece Kaczawa za pomocą suchego zbiornika Rzymówka. Acta Scientarum Polonorum Administratio Locorum, 14(1). 11. Kasperek R., Głowski R. 2019. Hydroenergetic use of hydraulic structures on the Oława River. Acta Sci. Pol. Formatio Circumiectus 2019;18(4). 12.Magazines: Renewable and Sustainable Energy Reviews; International Journal on Hydropower and Dams; Energetyka Wodna (in Polsh); Gospodarka Wodna (in Polish); Water.
Learning outcomes: Student has a background knowledge about hydraulic structures (HS). It can exchange and characterize basic HS. There knows to check the stability of chosen elements of the weir. Student can perform calculations concerning of HS locks. It can describe results of own works and to formulate conclusions from the range of the HS
Assessment methods and assessment criteria: grade obtained at classes (60%) + grade obtained at lectures (40%)

Return to the List of Courses

';